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Abstract. We show that, for any number of components, the group of braids up to link-homotopy
is torsion-free. This generalizes a result of Humphries up to six components, and provides an explicit
solution to a question posed by Lin and addressed by Linell and Schick regarding the existence of
non-abelian torsion-free quotients of the braid group. The proof relies on the diagrammatic theory
of welded braids and uses the Artin representation. As a corollary, we obtain yet another proof that
braid groups themselves are torsion-free.

Introduction

Artin in [Art47] is the first author to mention the notion of link-homotopy, in the context of braids.1

This is an equivalence relation that allows continuous deformations during which two distinct com-
ponents remain disjoint at all times, but each component can self-intersect. Subsequently, numerous
authors have explored braids up to link-homotopy.

Among them, Goldsmith, in [Gol74], answers a question of Artin about the distinction between
isotopy and link-homotopy of braids, by providing an example of a non-trivial braid, up to isotopy,
that is trivial up to link-homotopy. She also provided a presentation of the homotopy braid group,
which emerges as a quotient of the standard braid group. Habegger and Lin, in [HL90], examined pure
braids as reduced free group automorphisms, through a homotopy version of Artin’s representation.
Additionally, Humphries in [Hum01] addressed the question of torsion in the homotopy braid group,
proving torsion-freeness for six components or less.

This torsion problem also arises in [BVW22], where the authors mention the broader question
posed by Lin, formulated in [Lin96] and addressed in the Kourovka notebook [MK14]: ‘Is there a
non-trivial epimorphism of the braid group onto a non-abelian group without torsion?’. Linnell and
Schick, in [LT07], provide a complete solution by showing that the braid group is residually torsion-
free nilpotent-by-finite, hence in particular has plenty of non-trivial torsion-free quotients. However,
they only give an existence proof, and explicit examples are not known for more than six components.
Our main result is a complete solution to the torsion problem for any number of components.

Theorem. (Theorem 2.9) The homotopy braid group is torsion-free for any number of components.

Additionally, as a corollary of this result, we recover the well-known result that the braid group is
torsion-free for any number of components (Corollary 2.11). This fact, originally due to Fadell and
Neuwirth in [FN62, Thm. 8], also follows from the stronger property of left-orderability established
by Dehornoy in [Deh94]. The property of left-orderability for the homotopy braid group is not known
to this day and constitutes an interesting open question, as discussed in Remark 2.12.

Our result relies heavily on the theory of welded braids, which are a diagrammatic generalization
of braids, allowing virtual crossings in addition to the classical ones. They are regarded up to cer-
tain local deformations that generalize the usual Reidemeister moves. Welded braids can be defined
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1For links, this theory was deeply investigated by [Mil54, Lev88, HL90].
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2 EMMANUEL GRAFF

through various equivalent definitions that have been investigated by numerous authors across dif-
ferent contexts [FRR97, Sav96, McC86, BWC07, BH13, ABMW17a]. While we won’t discuss these
various perspectives here, we direct interested readers to Damiani’s survey [Dam17] for further details.
Instead, our focus lies on the notion of link-homotopy for welded objects, alongside its interpretation
in terms of arrow calculus.

The notion of w-arrows, and more generally, w-trees, developed in [MY19], is a welded version
of Habiro’s claspers [Hab00]. These are diagrammatic tools upon which surgery operations can be
performed. Their manipulation up to link-homotopy is described in [MY19, §9] in what is referred to
as homotopy arrow calculus. This homotopy arrow calculus, will be central to our study.

The paper is divided into two sections. In the first preparatory section, we review the notion of
homotopy welded braids along with its associated arrow calculus. Additionally, we recall the definition
of the Artin representation in this context. Then, in the second section, we prove our main theorem
in two steps: first, a topological characterization of torsion elements in the homotopy braid group
using the Artin representation; then, an algebraic step where we show that the previously established
characterization is never satisfied for classical braids.

Acknowledgement : The author thanks Jean–Baptiste Meilhan and Akira Yasuhara for their careful
reading and pertinent corrections. The author also thanks Luis Paris for an insightful comment that
led to one of the key ideas.

1. Preliminaries

In this section, we review the notion of braids and their welded extension, focusing specifically on
their study up to link-homotopy. Additionally, we present the theory of homotopy arrow calculus.
Finally we recall the Artin representation in this context.

1.1. Welded Braids. Let us take n fixed points, in the unit interval r0,1s, denoted by p1 ă p2 ă

¨ ¨ ¨ ă pn.

Definition 1.1. An n-component welded braid diagram β “ pβ1, . . . , βnq is the oriented2 image of
an immersion

pβ1, . . . , βnq :
ğ

iďn

r0,1s Ñ r0,1s ˆ r0,1s

such that, for some permutation of t1, . . . , nu associated to β and denoted by πpβq, we have βip0q “

ppi, 0q and βip1q “ ppπpβqpiq, 1q for each i. We require the singularities to be a finite number of
transverse double points, labeled either as classical crossings or as virtual crossings, as illustrated in
Figure 1. Additionally, we require the immersion to be monotonic, which means that βiptq P r0,1sˆttu
for any t P r0, 1s and any i. We call the image of βi, the i-th component of β.

Figure 1. A classical and a virtual crossing.

A diagram whose associated permutation is the identity is said to be pure. A diagram with no
virtual crossings is called classical.

2In this paper, the adopted convention for the orientation of welded braid diagrams is from top to bottom.
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Definition 1.2. Welded link-homotopy is the equivalence relation generated by planar isotopies and
the following local moves:

‚ classical Reidemeister moves, == =
‚ virtual Reidemeister moves, == =
‚ mixed Reidemeister move, ‚ OC move,= =
‚ self-virtualization move. = =

Generally, welded braid diagrams are studied up to welded isotopy, which is defined by the same
set of moves except for the self-virtualization move.

Note that we do not require welded link-homotopy to preserve the monotonic property during the
deformation. Indeed, in order to apply the self-virtualization move, we need self-crossings, which
are prohibited by monotonicity. Furthermore, if a diagram is not monotonic, we can apply a welded
link-homotopy to convert it into a monotonic diagram (see [ABMW17b, Thm. 4.1]). Therefore, since
we are working up to link-homotopy, we can freely forget the monotonic condition, which will be
useful later, as arrow surgery typically does not preserve this property.

Moreover, note that the self-virtualization move generates the self-crossing change, where a classical
crossing involving two strands from the same component is changed into its opposite. This proves, in
particular, that the usual link-homotopy3 implies the welded link-homotopy.

The set of welded braid diagrams up to welded link-homotopy, equipped with the stacking operation,
forms a group: the homotopy welded braid group, denoted by hWBn. Elements of hWBn are called
homotopy welded braids. The set of pure welded braid diagrams up to welded link-homotopy forms
a subgroup of hWBn denoted by hWPn and called the pure homotopy welded braid group. Similarly,
the set of classical braid diagrams up to link-homotopy, equipped with the stacking operation, forms
a group called the homotopy braid group and denoted by hBn. Elements of hBn are called homotopy
braids. Finally, The set of pure classical braid diagrams up to link-homotopy forms a subgroup of
hBn denoted by hPn and called the pure homotopy braid group.

3Link-homotopy, in classical braid theory, is the equivalence relation defined by planar isotopy, classical Reidemeister
moves, and self-crossing changes.
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In the following proposition, we recall the know fact that the set-theoretic inclusion of hBn in
hWBn is injective; a proof can be found in [Gra23, Prop. 4.2.23].

Proposition 1.3. The homotopy braid group hBn injects into the homotopy welded braid group
hWBn.

1.2. Arrow calculus. Let us now review the arrow calculus developed by Meilhan and Yasuhara
in [MY19]. More precisely, let us consider the homotopy arrow calculus, which deals with welded
link-homotopy and will prove to be a central tool in our study.

Definition 1.4. [MY19, Def. 3.1] A w–tree for a welded braid diagram β is an immersed connected
uni-trivalent tree T , such that

‚ The univalent vertices of T are pairwise disjoint and are contained in βztcrossings of βu.
‚ There are finitely many singularities that are transverse double points of only two possible
kinds:

– virtual crossings between edges of T ,
– virtual crossings between strands of β and edges of T .

‚ All edges of T are oriented, such that each trivalent vertex has two ingoing edges and one
outgoing edge.

‚ Each edge of T is assigned a number (possibly zero) of involutive4 decorations, called twists,
which are disjoint from all vertices and crossings.

A w–tree with a single edge is called a w–arrow. We define the degree of T , denoted by degpT q, as
its number of trivalent vertices plus one.

Figure 2. Example of a degree 3 w-tree for a welded braid diagram.

The unique univalent vertex with an ingoing edge is called the head of the w-tree. By graphic
convention, it is represented by an arrow in the figures. The other univalent vertices are called tails.
When we do not need to distinguish between tails and head, we simply call all univalent vertices,
endpoints. In the figures, portions of the diagram are represented by black lines and w-trees edges by
red lines. Finally, twists are represented graphically by red dots ‚. See Figure 2 for an example.

Given a union of w-trees F for a welded braid diagram β, there is a procedure called surgery
detailed in [MY19] to construct a new diagram denoted βF . We illustrate in Figure 3 the surgery
along a w-arrow. Note that the orientation of the strand containing the tail, needs to be specified→ →

Figure 3. Surgery on a w-arrow.

4By involutive, we mean that twists on a same edge cancel pairwise.
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to define the surgery move. In the case where a w-arrow contains some twist, surgery introduces a
virtual crossing, as shown on the left-hand side of Figure 4. Moreover, if the edge of the w-arrow
intersects the diagram β, or another edge of a w-arrow, then the surgery introduces virtual crossings
as indicated on the right-hand side of Figure 4.→ → →

Figure 4. Surgeries near a twist and crossings.

Now if F contains some w-trees with degree higher than one, we first apply the expanding rule
shown in Figure 55 at each trivalent vertex: this breaks up F into a union of w-arrows, on which we
can perform surgery. → →

Figure 5. The expanding rule.

Welded braid diagram composition yields a notion of product for w-trees, as follows. We say that
a union F of k w-trees (k ě 2) for the trivial braid 1, is a product if

1F “

k
ź

i“1

1Ti ,

where Ti is a single w-tree for each i.
Homotopy arrow calculus refers to the set of operations on unions of welded braid diagrams with

some w-trees, which yield welded link-homotopic surgery results. These operations are defined and
developed in [MY19, §9]. In the rest of this section, we describe some of them, that will be used later.

Definition 1.5. Arrow isotopy is the equivalence relation generated by planar isotopies, virtual
Reidemeister moves involving edges of w-trees and/or strands of diagrams, and the following local
moves: = = = =
here the vertical strands are either edges of w-trees or strands of diagrams.

Lemma 1.6. [MY19, Lem. 5.6] Two w-trees related by an arrow isotopy have welded isotopic, hence
link-homotopic surgery results.

Definition 1.7. A w-tree for a welded braid diagram β is repeated if it intersects a component of β
in at least two endpoints.

5Here and in the following figures, we use the diagrammatic convention adopted in [MY19, Convention 5.1].
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Lemma 1.8. [MY19, Lem. 9.2 ] Surgery along a repeated w-tree does not change the welded link-
homotopy class of the welded braid diagram.

The following lemma describes how to manipulate endpoints up to welded link-homotopy.

Lemma 1.9. [MY19] Let T and S denote two w-trees for a given welded braid diagram β. We have
the following local moves up to welded link-homotopy.6

‚ Head/Tail reversal. If T 1 is obtained from T by modifying its head, resp. one of its tail, as
shown on the left, resp. right of the figure, then T “ T 1.= = T        ′T  T        ′T

‚ Tails exchange. If T and S have two adjacent tails and if T 1 Y S1 is obtained from T Y S by
exchanging these tails, then T Y S “ T 1 Y S1 as shown on the left of the figure.

‚ Heads exchange. If the heads of T and S are adjacent and if T 1 Y S1 is obtained from T Y S
by exchanging these heads as depicted in the middle of the figure, then T Y S “ T 1 Y S1 Y T̃ ,
where T̃ is as shown in the figure.

‚ Head/Tail exchange. If the head of T is adjacent to a tail of S and if T 1 Y S1 is obtained
from T YS by exchanging these endpoints as depicted on the right of the figure, then T YS “

T 1 Y S1 Y T̃ , where T̃ is as shown in the figure.

 T        ′
S

S    ′=T

T
~ T        ′

S
S    ′=T

T
~ T        ′

S
S    ′=T

We remark that the Head/Tail reversal, the Tails exchange and the Heads exchange moves are
already valid up to welded isotopy.

1.3. Artin representation. Originally, the Artin representation was defined in [Art47] within the
framework of classical braids, up to isotopy. Subsequently, it has been extended and extensively
studied in the contexts of link-homotopy and/or welded braids. Below, we focus on its welded version,
up to link-homotopy.

Recall the Artin braid generators σi for i P t1, . . . , n ´ 1u illustrated in Figure 6 and the virtual
braid generators ρi for i P t1, . . . , n ´ 1u, illustrated in Figure 7.

ni1 i+1· · · · · ·
Figure 6. The Artin genera-
tor σi.

ni1 i+1· · · · · ·
Figure 7. The virtual braid
generator ρi.

6By the notation T “ S we mean that βT and βS are equal in hWBn
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We also need the reduced free group denoted RFn, given by n generators x1, x2, . . ., xn, subject to
the relations rωxiω

´1,xis “ 1 for any 1 ď i ď n and any word ω in x1, . . . , xn.
Let us now define the homotopy welded Artin representation.

Definition 1.10. We call homotopy welded Artin representation the homomorphism denoted by
ϕ : hWBn Ñ AutpRFnq. It is defined for i P t1, . . . , n ´ 1u as follows:

ϕpρiq :

$

&

%

xi ÞÑ xi`1,
xi`1 ÞÑ xi,
xk ÞÑ xk if k R ti, i ` 1u,

and

ϕpσiq :

$

&

%

xi ÞÑ xi`1,
xi`1 ÞÑ x´1

i`1xixi`1,
xk ÞÑ xk if k R ti, i ` 1u.

Example 1.11. For any 1 ď i ‰ j ď n, consider the pure homotopy welded braid generators:

nji1 · · ·· · · · · ·
χij “ ρi ¨ ¨ ¨ ρj´2σj´1ρj´1 ¨ ¨ ¨ ρi if i ă j,

nij1 · · ·· · · · · ·
χij “ ρi´1 ¨ ¨ ¨ ρjσjρj`1 ¨ ¨ ¨ ρi´1 if j ă i.

A direct computation gives

Φpχijqpxkq “

"

xk if k ‰ i,
x´1
j xixj if k “ i.

This defines the ‘pure’ part of the representation, which already appears in [ABMW17a]. There, the
authors consider two equivalent definitions of the representation: a geometric one, in terms of ribbon
tubes, and a combinatorial one using Gauss diagrams.

Proposition 1.12. The homotopy welded Artin representation ϕ is injective.

Proof. Let us first note that for any β P hWBn the homomorphism ϕpβq sends a generator xi to a
conjugates of xπ´1pβqpiq. In particular, if β P kerpϕq then β is a pure braid. Therefore, we conclude with
[ABMW17a, Thm. 2.34], which states that the representation ϕ restricted to hWPn is injective. □

Lemma 1.13. Let F be a w-tree for the trivial braid 1 P hWBn not having its head on the k-th
component. The action of ϕp1F q on xk P RFn, is given by:

ϕp1F qpxkq “ xk.

Proof. By using the expanding rule of Figure 5 iteratively, we can break up F into a union of w-arrows,
none of which has its head on the k-th component. Then, using arrow isotopies, we can rearrange
such a union into a product. It is therefore enough to prove the result when F is of degree one. In
this case, up to arrow isotopy and the Head/Tail reversal move of Lemma 1.9, we can assume that F
is simply a horizontal w-arrow. Then, 1F is either χij or χ´1

ij for some 1 ď i ‰ j ď n with k ‰ i, and
the result follows from Example 1.11. □
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2. Proof of Torsion-Freeness

This section contains the main result of our paper: the proof that homotopy braid groups are
torsion-free (Theorem 2.9). The proof is decomposed into two steps. In the first step, we show that
torsion elements in hWBn appear as conjugates of specific braids, having only virtual crossings. Then,
in a second step, using an algebraic obstruction, we show that such conjugates never correspond to
classical braids in hBn.

2.1. A characterization of torsion. Let us denote by λn P hWBn the homotopy welded braid,
illustrated in Figure 8, given by

λn “ ρ1ρ2 ¨ ¨ ¨ ρn´1.

n−11 n2 3 · · ·· · ·
Figure 8. The homotopy welded braid λn.

Notice that λn is a torsion element of order n. We denote by τn the n-cycle pn n´1 ¨ ¨ ¨ 2 1q “ πpλnq

associated to λn. When the value of n is clear from the context, it will be omitted in the notation.
Let us describe in the following lemma the action of conjugation by λ on w-trees.

Lemma 2.1. Let F be a product of w-trees for the trivial braid 1 P hWBn, all having their heads on
the k-th component. Then, the conjugate λ1Fλ

´1 is link-homotopic to 1F 1, where F 1 is a product of
w-trees, all having their heads on the component τ´1pkq.

Proof. Since the conjugate of a product is the product of the conjugates, it is enough to prove the
result when F is a single w-tree. Consider, therefore, the conjugate λ1Fλ

´1 where F is a single
w-tree having its head on the k-th component. We use an arrow isotopy to slide F through λ. This
operation turns F into a new w-tree whose head is on component τ´1pkq. Finally, simplify λ with
λ´1 by applying a welded isotopy. □

In the following lemma, we use arrow calculus to describe specific conjugates of homotopy welded
braids. Later on Lemma 2.6, we will use this lemma to characterize torsion elements in hBn up to
conjugation.

Lemma 2.2. Let β P hWBn be a homotopy welded braid, whose associated permutation is an n-
cycle. Then β is conjugate to 1F ¨ λ, where F is a product of w-trees all having their heads on the
n-th component.

Proof. Let us show by induction on k P t1, . . . , nu that β is conjugate to a braid of the form 1Fk
¨ λ,

where Fk is a product of w-trees having their heads on components numbered from k to n.
For the base case, we can assume that β is conjugated with β1 satisfying πpβ1q “ τ “ pn n ´

1 ¨ ¨ ¨ 2 1q. We can then write
β1 “ θλ,

where θ “ β1λ
´1 is a pure homotopy welded braid. Additionally, it is clear that a virtualization move

can be achieved by surgery on a w-arrow (see [MY19, Fig. 6]). This implies that any pure braid can
be obtained by w-arrow surgeries on the trivial braid. We can thus write

β1 “ 1F1 ¨ λ,
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where F1 is a product of w-arrows.
Now, assume by induction that for some 1 ď k ă n the braid β is conjugate with

βk “ 1Fk
¨ λ,

where Fk is a product of w-trees with their heads on components numbered from k to n. Note, on
one hand, that Lemma 1.9 allows us to exchange the relative position of two consecutive factors in a
product, up to higher degree w-trees. On the other hand, note that by Lemma 1.8, w-trees of degree
higher than n are repeated and are therefore trivial up to link-homotopy. Combining these two facts,7

we rearrange w-trees degree by degree to obtain the following claim.

Claim 2.3. The pure homotopy welded braid 1Fk
decomposes as follows:

1Fk
“ 1F 1

k
1F 2

k
,

where F 1
k is a product of w-trees having their heads on the k-th component and F 2

k is a product of
w-trees having their heads on components numbered from k ` 1 to n.

We then consider and compute the conjugate,

βk`1 :“ p1F 1
k
q´1βk1F 1

k
,

“ p1F 1
k
q´11F 1

k
1F 2

k
¨ λ1F 1

k
λ´1 ¨ λ,

“1F 2
k

¨ λ1F 1
k
λ´1 ¨ λ.

Finally, by Lemma 2.1, λ1F 1
k
λ´1 is a product of w-trees having their heads on the pk`1q-th component

which concludes the induction as well as the proof. □

Let us now tackle the question of torsion, starting with a preliminary result for pure braids. This
proposition is well-known and can be found, for example, in [HL90] and [Hum01].

Proposition 2.4. The pure homotopy braid group hPn is torsion-free for any positive integer n.

With the following lemma, we reduce our study to prime numbers of components.

Lemma 2.5. If there is torsion in hBn, then for some prime number p ď n, there exists a torsion
element of order p in hBp.

Proof. Let β P hBn be a torsion element of prime order p, and let πpβq be its associated permutation.
By Proposition 2.4, the subgroup hPn is torsion-free. Consequently, πpβq ‰ 1, implying that πpβq is a
torsion element of order p in the symmetric group Sn. Specifically, πpβq can be expressed as a product
of disjoint p-cycles, where p ď n. Let us denote one such p-cycle as pi1, . . . , ipq. Now, consider the
subgroup G of hBn generated by elements whose associated permutation sends the set ti1, . . . , ipu to
itself. Next, define the homomorphism from G to hBp, which retains only the components ti1, . . . , ipu.
This homomorphism sends β to a torsion element of order p in hBp, thereby completing the proof. □

Recall from Definition 1.1 that a homotopy welded braid is classical if it belongs to the subgroup
hBn of hWBn generated by the Artin generators σi (see Proposition 1.3). Note also that the welded
braid λ P hWBn is a torsion element of order n. In the following lemma, we give a characterization
of torsion elements in hBn using this braid λ as well as the notion of classical braid.

Lemma 2.6. There is torsion in hBn if and only if for some prime number p ď n the braid λ P hWBp

given by λ “ ρ1ρ2 ¨ ¨ ¨ ρp´1 is conjugate to a classical braid.

7Note that a similar sorting process appears in the proof of [MY19, Thm. 9.4]; see also [Yas09, Thm. 4.3] for an
analogous argument using claspers.
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Proof. According to Lemma 2.5, if there is torsion in hBn, we can find a torsion element β of order
p in hBp for some prime number p. Consequently, πpβqp “ Id, and by Proposition 2.4, πpβq ‰ Id.
Thus, πpβq is a torsion element of order p and therefore it is a p-cycle. Now, by Proposition 1.3, we
can consider the classical braid β as an element of hWBp. Therefore, by Lemma 2.2, β is conjugate
to 1F ¨ λ, where F is a product of w-trees, all having their heads on the p-th component. Moreover,
by Lemma 2.1, for any integer k P t1, . . . , p ´ 1u, the conjugates λk1Fλ

´k are products of w-trees,
none of which have their heads on the p-th component. Hence, by Lemma 1.13,

ϕ
´

λk1Fλ
´k

¯

pxpq “ xp

for any k P t1, . . . , p ´ 1u. In particular:

ϕ
`

p1Fλqp
˘

pxpq “ ϕ
´

1F
`

λ1Fλ
´1

˘`

λ21Fλ
´2

˘

¨ ¨ ¨
`

λp´11Fλ
1´p

˘

λp
¯

pxpq,

“ ϕp1F q ˝ ϕ
`

λ1Fλ
´1

˘

˝ ϕ
`

λ21Fλ
´2

˘

˝ ¨ ¨ ¨ ˝ ϕ
`

λp´11Fλ
1´p

˘

pxpq,

“ ϕp1F qpxpq.

On the other hand, since β is a torsion element, βp “ p1Fλqp “ 1, which implies that

ϕ
`

p1Fλqp
˘

pxpq “ ϕp1qpxpq “ xp.

By combining the two previous equalities, we deduce that ϕp1F qpxpq “ xp. Moreover, by Lemma
1.13 again, we also have that ϕp1F qpxkq “ xk for any k ă p. Thus, ϕp1F q “ Id and by injectivity of
ϕ (Proposition 1.12), the braid 1F is trivial. Therefore, the classical braid β is conjugate to λ, thus
showing the ‘only if’ part of the statement.

To show the converse implication, we use the fact that any conjugate of λ is a torsion element of
order p in hWBp and that, consequently, a braid given by the same expression in hBn is also a torsion
element. □

2.2. An algebraic obstruction. By Lemma 2.6, the final part of the proof of our main result
consists in showing that for any integer n, the braid λ has no classical braid as conjugate. To achieve
this, we need to determine whether a welded braid is also a classical one. This is done in the following
lemma, drawing inspiration from [HL90, Thm. 1.7].

Lemma 2.7. Let β P hWBn be a homotopy welded braid. If β is a classical braid then

ϕpβqpx1x2 ¨ ¨ ¨xnq “ x1x2 ¨ ¨ ¨xn.

Proof. This follows from a simple verification on the classical generators σi. □

Recall now the reduced Magnus expansion. This is the homomorphism

M : RFn Ñ An

from the reduced free group into the polynomial algebra An in non-commuting variables X1, . . . , Xn

in which monomials Xα1Xα2 ¨ ¨ ¨Xαk
vanish if αi “ αj for some i ‰ j. The image of a generator xi is

defined by the polynomial Mpxiq :“ 1 ` Xi.
In the following lemma, we describe elements not belonging to the fixed points of ϕpλq.

Lemma 2.8. For any β P hWBn, ϕpλq ˝ ϕpβqpx1x2 ¨ ¨ ¨xnq ‰ ϕpβqpx1x2 ¨ ¨ ¨xnq.

Proof. Let us define the map F : An Ñ Z which sends a polynomial to the sum of the coefficients of
its monomials of degree n. On the one hand, we observe that

F
´

M
`

ϕpρiqpxq
˘

¯

“ F
`

Mpxq
˘

and F
´

M
`

ϕpσiqpxq
˘

¯

“ F
`

Mpxq
˘

,
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for any x P RFn and any i. The first equality is clear since M
`

ϕpρiqpxq
˘

is obtained from Mpxq

by permuting the variables Xi and Xi`1. The second equality is less obvious: indeed, M
`

ϕpσiqpxq
˘

is obtained from Mpxq by first permuting the variables Xi and Xi`1 and then substituting Xi with
Xi ` XiXi`1 ´ Xi`1Xi, potentially introducing new monomials of degree n. However, these extra
monomials appear in pairs and with opposite signs and thus do not change the value of F . Therefore,
we have that

F
`

M
`

ϕpβqpxq
˘˘

“ F
`

Mpxq
˘

,

for any β P hWBn and any x P RFn. Moreover note that,

F
`

Mpx1x2 ¨ ¨ ¨xnq
˘

“ F
`

p1 ` X1qp1 ` X2q ¨ ¨ ¨ p1 ` Xnq
˘

,

“ 1,

hence F
`

M
`

ϕpβqpx1x2 ¨ ¨ ¨xnq
˘˘

“ 1 for any β P hWBn. But on the other hand, for any ω P RFn,

M
`

ϕpλqpωq
˘

is obtained from Mpωq by permuting the variables Xi cyclically. Hence a necessary

condition for having M
`

ϕpλqpωq
˘

“ Mpωq is that

F
`

Mpωq
˘

” 0 pmod nq.

Therefore, ϕpλq ˝ ϕpβqpx1x2 ¨ ¨ ¨xnq ‰ ϕpβqpx1x2 ¨ ¨ ¨xnq for any β P hWBn. □

We can finally prove the main theorem of this paper.

Theorem 2.9. The homotopy braid group hBn is torsion-free for any number of components n.

Proof. Suppose by contradiction that there is a torsion element in hBn. By Lemma 2.6 there exists
a prime number p ď n and some braid β P hWBp such that β´1λβ is a classical braid. According to
Lemma 2.7 this conjugate must satisfy,

ϕ
`

β´1λβ
˘`

x1x2 ¨ ¨ ¨xpq “ x1x2 ¨ ¨ ¨xp,

or equivalently,
ϕpλq ˝ ϕpβqpx1x2 ¨ ¨ ¨xpq “ ϕpβqpx1x2 ¨ ¨ ¨xpq.

This yields a contradiction by Lemma 2.8. □

It follows from Theorem 2.9 that the standard braid group Bn is torsion-free for all n. To prove
this corollary, we need the following well-known proposition, which essentially dates back to Artin
[Art47].

Proposition 2.10. The pure braid group Pn is torsion-free for any number of components n.

We recover in this way a result of Fadell and Neuwirth (see Remark 2.12).

Corollary 2.11. The braid group Bn is torsion-free for any number of components n.

Proof. Let us consider the projection p : Bn Ñ hBn. Since hBn is torsion-free (Theorem 2.9), any
torsion element in Bn must belong to the kernel K :“ kerppq. However, it is clear from [Gol74] that
K Ă Pn, thus K is torsion-free by Proposition 2.10 and the proof is complete. □

Remark 2.12. The study of torsion in braid groups dates back to Fadell and Neuwirth in 1962.8

Building upon topological methods, they show in [FN62, Thm. 8] that Bn is torsion-free for every n.
One may wonder whether a similar methods may provide alternative proof of the torsion-freeness in
homotopy braid groups. However, to date, there is no known classifying space for hBn that would

8We mention however a more geometric proof, given in [GM11, §2] and based on the earlier works of [Nie42, vK19,
Eil34].
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enable such a demonstration. Moreover, another common proof of torsion-freeness in Bn appears
in [Deh94], where Dehornoy established the stronger property of left-orderability. One may wonder
again if a similar proof applies for hBn, but the question of orderability in this group is still open.
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